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Scaling Laws for Connectivity in
Random Threshold Graph Models with

Non-Negative Fitness Variables
Armand M. Makowski and Osman Yağan

Abstract—We explore the scaling properties for graph
connectivity in random threshold graphs. In the many
node limit, we provide a complete characterization for the
existence and type of the underlying zero-one laws, and
identify the corresponding critical scalings. These results
are consequences of well-known facts in Extreme Value
Theory concerning the asymptotic behavior of running
maxima on i.i.d. random variables. In the important
special case of exponentially distributed fitness, we show
that the (essentially unique) critical scaling which ensures
a power-law degree distribution, does not result in graph
connectivity in the asymptotically almost sure (a.a.s.) sense.

Index Terms—Scale-free networks, Random threshold graphs,
Hidden variables, Connectivity, Zero-one laws, Extreme Value
Theory.

I. INTRODUCTION

FOLLOWING the work of Barabási and Albert [3], the
scale-free nature of complex networks is often explained

by means of growth models with a preferential attachment
mechanism – The so-called “the rich get richer” rule. Although
preferential attachment is a reasonable assumption in some
contexts, it is predicated on the information about the degree
of each vertex being available to newly added nodes, either
explicitly or implicitly. There are many situations, including
some social networks, where this assumption may be ques-
tioned, and where instead the creation of a link between two
nodes results from a mutual benefit based on their intrinsic
attributes, e.g., authority, friendship, social success, strength
of interaction, etc.

A. Random threshold graphs

Hidden variable models form a broad class of random
graph models that naturally incorporate this viewpoint by
establishing links on the basis of fitness variables associated
with individual nodes, e.g., see the papers [7], [10], [40] (and
references therein). Interest in such models has been spurred
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in part by the finding that under certain conditions, hidden
variable models do give rise to scale-free networks, and this
without resorting to preferential attachment. This issue has
been discussed at some length in the more restricted setting
of random threshold graphs which we now describe.

The network comprises n nodes, labelled k = 1, . . . , n,
and to each node k we assign a fitness variable (or weight)
ξk which measures its importance or rank. The random
variables (rvs) ξ1, . . . , ξn are assumed to form a collection of
i.i.d. R-valued rvs, each distributed according to some given
probability distribution function F : R → [0, 1].1 For distinct
k, � = 1, . . . , n, we declare nodes k and � to be adjacent if

ξk + ξ� > θ (1)

for some threshold θ. We refer to the random graph defined
by the adjacency notion (1) as a random threshold graph on
the set of vertices {1, . . . , n}, and hereafter we denote it by
T(n; θ).

These graphs have recently been the focus of much ac-
tivity. Their hierarchical structure was elegantly described
by Hagberg et al. in terms of so-called creation sequences
[25]. The survey by Diaconis et al. [11] presents several
equivalent definitions of random threshold graphs. A number
of their graph-theoretic properties are developed by Reilly and
Scheinerman [36], [37]. Ide et al. [26] explore the spectral
properties of the underlying (random) adjacency matrices.
Rigorous convergence results are derived in [19], [20], [28] for
a number of important network quantities such as the degree
distribution, degree correlations, clustering coefficients and the
number of triangles. Random threshold graphs are amenable to
various generalizations, e.g., see Ide et al [27], and the Ph.D.
thesis by Reilly [36]. Random geographical threshold graphs
are discussed by Bradonjić et al. [8], [9], and by Masuda et
al. [28], [31].

B. Connectivity

Interestingly, most of these earlier papers do not deal with
the property of connectivity – A notable exception can be
found in the papers by Bradonjić et al. [8], [9] concerning the
related class of random geographical threshold graphs. See
also [36], [37] for results with fixed θ. In social networks
(and elsewhere), connectivity is an important property which

1What we call here a probability distribution function is also called a
cumulative distribution function in other literatures.
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shapes the characteristics of various dynamical processes on
networks such as the diffusion of cultural fads, beliefs, norms,
and innovations [14], [41], [42], the spread of diseases and
information [1], [33], [44], and cascading failures [21], [45].
Although analyzing such phenomena in random threshold
graphs is beyond the scope of this paper, by analogy with clas-
sical results for Erdős-Rényi graphs [34], [41] we expect the
following three conjectures to hold when the random threshold
network is connected: (i) Simple contagion processes such
as the spread of information and diseases easily take place,
i.e., the network is always in the endemic state for any
(positive) transmissibility parameter, and an information (or
disease) started from an arbitrary individual reaches out to a
positive fraction of the nodes in the large n limit; (ii) However,
in the case of a complex contagion process where multiple
sources of exposure to the item (e.g., a rumor, a cultural
fad, a political view, or a new technological innovation) are
required for an individual to adopt a new behavior, network
connectivity will create a high resistance to the adoption of the
new item by virtue of the high local “stability” of the nodes.
In other words, a complex contagion process started from
an arbitrary individual will always die-out quickly without
reaching a significant proportion of the network; and (iii)
A fully connected network is expected to be robust against
random failures of the nodes, i.e., even if a positive fraction
of the nodes randomly fails, the remaining nodes will still form
a giant connected component comprising a positive fraction of
the nodes. All three conjectures hold for Erdős-Rényi graphs
[6], [34], [41], and their validity in the context of random
threshold graphs is a matter currently under investigation.

C. Contributions

Against this backdrop, as a natural first step towards resolv-
ing these conjectures, we find it relevant to develop a better
understanding of the property of connectivity in the random
threshold graphs defined through (1). We do so when the
fitness variables are non-negative rvs and θ > 0 – See Section
II for the mild assumptions enforced on F together with
some notation and easy preliminaries. Results for arbitrary
distributions F are discussed in [30]; however, as they are
technically more involved, we have elected here to restrict
our attention to the simpler case of non-negative fitness rvs.
Fortunately these more limited results do cover the important
situation when F is an exponential distribution; see Section
V.

For convenience, we write

P (n; θ) := P [ T(n; θ) is connected ] ,
θ > 0,

n = 2, 3, . . .
(2)

We seek to understand how these probabilities behave when
the number n of nodes becomes large and the threshold value θ
is scaled appropriately. This amounts to making θ depend on n
by means of scaling functions θ : N0 → R+ : n → θn, and to
investigating the limit limn→∞ P (n; θn). We are particularly
interested in conditions under which either

lim
n→∞P (n; θn) = 0 (3)

or
lim
n→∞P (n; θn) = 1. (4)

We naturally refer to the convergence statements (3) and (4)
as a zero law and a one law, respectively.

Such zero-one laws have been discussed extensively in
the context of other classes of random graphs, e.g., Erdős-
Rényi graphs [6], [13], geometric random graphs [2], [35]
and random key graphs [5], [12], [39], [43]. In analogy with
results obtained in these earlier studies, we expect a critical
scaling θ� : N0 → (0,∞) to define a boundary in the space of
scalings with the following rough meaning: For n sufficiently
large, a threshold value θn suitably smaller (resp. larger) than
θ�n ensures P (n; θn) � 1 (resp. P (n; θn) � 0).

We begin the discussion in Section III-A by adapting the
terminology of McColm [32, p. 376] so as to distinguish
between weak and strong critical scalings. We show that the
existence and type of a zero-one law, and the form of its
critical scaling are completely determined by properties of
F . This relies in an essential way on a representation of
the probability of graph connectivity. This expression, derived
in Section VII-A, highlights the role played by the running
minima and maxima of the i.i.d. fitness rvs. In Section III-B we
characterize zero-one laws for graph connectivity in terms of
the limiting properties of these running minima and maxima.
These results are then applied in Section IV and in Section
VI.

In Section IV we show that the existence of a strong critical
scaling is equivalent to the weight distribution F having
infinite support and being rapidly varying (in the sense of
Gnedenko [22]). In that case the critical scaling is seen to be
asymptotically equivalent to the scaling λF : N0 → R+ given
by the quantiles

λF,n =

(
1

1− F

)←
(n), n = 1, 2, . . .

where ← denotes the generalized (left-continuous) inverse
operation applied to non-decreasing functions; see a precise
definition at (17).

When F is not rapidly varying but still with infinite support,
the situation is more complex and we need to appeal to
Extreme Value Theory. This is done in Section VI where we
leverage the classical characterization of the maximum domain
of attraction for each of the three max-stable distributions.
In particular we show that a weak (resp. strong) zero-one
law holds when F has infinite support and belongs to the
maximum domain of attraction of the Fréchet (resp. Gumbel)
distribution. The theory developed here needs to be modified
in all other cases, including when F belongs to the maximum
domain of attraction of the Weibull distribution. We note that
connections to Extreme Value Theory were already exploited
in the context of random threshold graphs by Ide et al. in [20]
(as well as in [19]).

In Section V we discuss the case when F is exponentially
distributed with parameter λ > 0 (a distribution which belongs
to the maximum domain of attraction of the Gumbel distri-
bution). This case was used by some authors, e.g., Caldarelli
et al. [10], [40], to demonstrate the possibility of generating
scale-free networks by proper selection of F . These authors
show in the many node limit that degrees follow a power-
law distribution only if θ�n = λ−1 logn. However, the results
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obtained here imply

lim
n→∞P (n; θ�n) = 1− e−1,

and so both (3) and (4) fail under this scaling which acts as
the critical scaling in the exponential case! Thus, in the regime
where the random threshold graph with exponential fitness is
scale-free, neither connectivity nor the lack thereof are typical.
This is in line with impossibility results recently obtained by
Faragó [17], [18] for some homogeneous random networks.

The situation is vastly different with the preferential model
of Barabási and Albert [3]: Its degree distribution exhibits
power law behavior, and yet, this inhomogeneous network
model (as an undirected graph) is connected, in fact tree-
like, by construction. In short, while random threshold graphs
with exponentially distributed fitness may possibly account
for a power law without invoking preferential attachment,
the inability to provide a.a.s. connectivity may render such
models unsuitable for describing situations where connectivity
is an expected network feature or requirement. In a limited
sense, this further illustrates the well-known difficulty of
building random graph models which are rich enough to
exhibit simultaneously multiple structural properties.

All the proofs are collected in Section VII, and the main
results are illustrated through limited simulation studies for
several important special cases.

II. ASSUMPTIONS, NOTATION AND SOME EASY

PRELIMINARIES

A word on the notation and conventions in use here:
All statements involving limits, including asymptotic equiv-
alences, are always understood with n going to infinity. The
rvs under consideration are all defined on the same probability
triple (Ω,F ,P). All probabilistic statements are made with
respect to the probability measure P, with corresponding
expectation operator denoted by E. The notation

P→ n (resp.
=⇒n) is used to signify convergence in probability (resp.
convergence in distribution) with n going to infinity.

Let {ξ, ξk, k = 1, 2, . . .} denote a collection of i.i.d. R+-
valued rvs defined on the probability triple (Ω,F ,P) – We
use ξ as a generic representative of this sequence of i.i.d. rvs.
Throughout the following assumptions are enforced on their
common probability distribution function F : R → [0, 1].

Assumption A: The probability distribution function F :
R → [0, 1]

(i) has support contained in R+ (so F (x) = 0 if x < 0);
(ii) is continuous on R, or equivalently, has no atoms (and so

cannot be degenerate at a single point, in particular, the
origin);

Assumption A-(ii) implies F (0) = 0, and is most easily
satisfied in practice by taking F to be absolutely continuous,
say with density function f : R → R+ (so f(x) = 0 for x < 0
by Assumption A-(i)). In due course additional assumptions
will be made on F .

With the probability distribution function F we associate
the two quantities

ξ�F = inf (x ∈ R : F (x) > 0) (5)

and
ξF = sup (x ∈ R : F (x) < 1) . (6)

Under the foregoing assumptions, ξ�F is necessarily finite with
ξ�F ≥ 0. It is easy to see that ξ�F < ξF : While this is clear
when ξF = ∞, it is also the case when ξF is finite since the
equality ξ�F = ξF is precluded by the absence of atoms as per
Assumption A-(ii).

Finally, we find it convenient to associate with the rvs
{ξk, k = 1, 2, . . .} their running minima and maxima defined
by

M�
n := min (ξ1, . . . , ξn) (7)

and
Mn := max (ξ1, . . . , ξn) (8)

for each n = 1, 2, . . .. It is a simple matter to check that

lim
n→∞M�

n = ξ�F a.s. (9)

and
lim
n→∞Mn = ξF a.s. (10)

where these convergence statements are monotone from below
and above, respectively. Needless to say, the definitions (5),
(6), (7) and (8), and the facts (9) and (10) all hold for any
probability distribution F : R → [0, 1], not just for those with
support in R+.

III. ZERO-ONE LAWS AND CRITICAL THRESHOLDS

Recall that a scaling is defined as any mapping θ : N0 →
R+, and that we are interested in finding conditions on
such scalings to ensure either limn→∞ P (n; θn) = 1 or
limn→∞ P (n; θn) = 0. Typically there exist scalings, deemed
critical, which act as boundary in the space of scalings
between these two extremes.

A. Strong vs. weak zero-one laws

The terminology, originally developed by McColm for ran-
dom graphs on a line segment [32, p. 376], is now adapted to
the class of random threshold graphs: A strong zero-one law
is said to hold (for graph connectivity) with critical scaling
θ� : N0 → (0,∞) if for any scaling θ : N0 → R+ satisfying

lim
n→∞

θn
θ�n

= c (11)

for some c > 0, we have

lim
n→∞P (n; θn) =

⎧⎨
⎩

1 if 0 < c < 1

0 if 1 < c.
(12)

Any scaling θ� : N0 → (0,∞) appearing in (11)-(12) is called
a strong critical scaling.

On the other hand, a weak zero-one law is said to hold (for
graph connectivity) with critical scaling θ� : N0 → (0,∞) if
for any scaling θ : N0 → R+ we have

lim
n→∞P (n; θn) =

⎧⎪⎨
⎪⎩

1 if limn→∞ θn
θ�
n
= 0

0 if limn→∞ θn
θ�
n
= ∞.

(13)
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Any scaling θ� : N0 → (0,∞) appearing in (13) is called a
weak critical scaling.

In its weak form the one law (resp. zero law) emerges when
considering scalings θ : N0 → R+ which are at least an order
of magnitude smaller (resp. larger) than θ�. On the other hand,
under the strong law, for n sufficiently large, a threshold value
θn suitably smaller (resp. larger) than θ�n ensures P (n; θn) � 1
(resp. P (n; θn) � 0) provided θn ∼ cθ�n with 0 < c < 1 (resp.
c > 1). This is in sharp contrast with (13) in that the strong one
law (resp. zero law) still occurs with scalings θ : N0 → R+

which are asymptotically smaller (resp. larger) than θ� but of
the same order of magnitude as θ�.

For each n = 2, 3, . . ., the mapping θ → P (n; θ) is non-
increasing on (0,∞), and an easy monotonicity argument (in
θ) shows that a strong zero-one law implies a weak zero-one
law, and that a strong critical scaling is also a weak critical
scaling.

B. Two basic zero-one laws

In the context of the random threshold graphs discussed in
this paper, the asymptotic properties of the running maxima
(8) provide useful characterizations of the zero-one laws. The
first result along these lines deals with strong zero-one laws.

Theorem 3.1: Assumptions A are enforced on the probabil-
ity distribution function F . If θ� : N0 → (0,∞) is a scaling
which satisfies

lim
n→∞ θ�n = ∞, (14)

then the strong zero-one law (12) holds for graph connectivity
with critical scaling θ� : N0 → (0,∞) if and only if

Mn

θ�n

P→ n 1. (15)

A requirement weaker than the convergence (15) is shown
to suffice for weak zero-one laws.

Theorem 3.2: Assumptions A are enforced on the proba-
bility distribution function F . Assume there exists a scaling
θ� : N0 → (0,∞) satisfying (14) such that

Mn

θ�n
=⇒n R (16)

for some R+-valued rv R. If R is a non-degenerate rv with
P [R = 0] = 0, then only the weak zero-one law (13) holds for
graph connectivity with critical scaling θ� : N0 → (0,∞).

Theorem 3.1 and Theorem 3.2 are established in Section
VII. Careful inspection of the arguments in Section VII-B
shows that the non-negativity of ξ is needed only to ensure
0 ≤ |ξ�F | < ∞. Such arguments still work for any rv ξ with
finite |ξ�F | even if ξ�F < 0. The case ξ�F = −∞ is technically
more involved, and is addressed in [30].

In order to understand when the conditions (15) and (16)
occur, we exploit classical results from Extreme Value Theory
in Section IV and Section VI, respectively; e.g., see the
monographs [16], [23], [24], [38] for additional details.

IV. RAPID VARIATION AND STRONG ZERO-ONE LAWS

First some notation: With any non-decreasing function
g : R → [0,∞], we associate its (left-continuous) generalized
inverse g← : R+ → [−∞,∞] defined by

g←(t) = inf (x ∈ R : g(x) ≥ t) , t ≥ 0 (17)

with g←(t) = ∞ if the set is empty. Additional information
concerning generalized inverses can be found in the mono-
graph by Resnick [38, Section 0.2].

For any probability distribution function F : R → [0, 1] we
introduce the quantiles

λF,n =

(
1

1− F

)←
(n), n = 1, 2, . . . (18)

If the probability distribution function F has support in R+

with F (0) = 0 (as is the case here under Assumptions A), then
somewhat annoyingly, we have λF,1 = −∞ according to this
definition. As a result, in order to simplify the presentation,
we modify the definition by setting λF,1 = 0 instead. We also
note that for each n = 2, 3, . . ., 0 < λF,n < ∞ with

lim
n→∞λF,n = ξF (19)

monotonically from below. With the aforementioned modifica-
tion, we think of (18) as defining the scaling λF : N0 → R+.

A. Rapid variation and relative stability are equivalent

Consider a collection of i.i.d. R-valued rvs {ξ, ξk, k =
1, 2, . . .}, each distributed according to the probability distri-
bution F : R → [0, 1]. Its sequence of maxima {Mn, n =
1, 2, . . .} (still given by (8)) is said to be relatively stable if
there exists a scaling λ : N0 → (0,∞) such that

Mn

λn

P→ n 1. (20)

Note the requirement λn > 0 for all n = 1, 2, . . ., even if F
does not have its support contained in R+. Scalings appearing
at (20) are unique up to asymptotic equivalence.

When 0 < ξF < ∞, the convergence (10) is equivalent to

lim
n→∞

Mn

ξF
= 1 a.s.,

while (19) implies
λF,n ∼ ξF . (21)

The validity of (20) (with λn = λF,n) is therefore always
guaranteed.

On the other hand, if ξF = ∞, then (21) is meaningless
since limn→∞ λF,n = ∞ and a finer analysis is required.
When ξF = ∞, Gnedenko [22] gave a complete characteriza-
tion of relative stability with the help of the notion of rapid
variation: The distribution F : R → [0, 1] is said to be rapidly
varying if ξF = ∞ and

lim
t→∞

1− F (tx)

1− F (t)
=

⎧⎨
⎩

0 if x > 1

∞ if 0 < x < 1.
(22)

Combining the remarks above with Theorem 2 in [22, p.
428] leads to the following characterization.
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Theorem 4.1: Consider a collection of i.i.d. R-valued rvs
{ξ, ξk, k = 1, 2, . . .}, each distributed according to the prob-
ability distribution F : R → [0, 1]. Its sequence of maxima
{Mn, n = 1, 2, . . .} is relatively stable if and only if either
0 < ξF < ∞ or F is rapidly varying; in either case the scaling
λ : N0 → (0,∞) appearing in (20) can be selected through

λn ∼ λF,n, n = 1, 2, . . . (23)

B. A strong zero-one law

We are now in a position to give one of the main results of
the paper.

Theorem 4.2: Assumptions A are enforced on the probabil-
ity distribution function F , and assume ξF = ∞. Consider any
scaling θ� : N0 → (0,∞) such that

θ�n ∼ λF,n (24)

where the scaling λF : N0 → R+ is given by (18). Then, graph
connectivity obeys a strong zero-one law (12) with critical
scaling θ� : N0 → (0,∞) if and only if F is rapidly varying.

Proof. By virtue of (19), ξF = ∞ is equivalent to
limn→∞ λF,n = ∞, and by Theorem 4.1, the rapid variation
of F is equivalent to (20) with (23). The desired result is
now immediate from Theorem 3.1.

V. EXPONENTIAL FITNESS

For some λ > 0, the rv ξ is said to be exponentially
distributed with parameter λ > 0, written ξ ∼ Fλ, if

P [ξ ≤ x] = Fλ(x) = 1− e−λx, x ≥ 0. (25)

This special case was considered already in [10], [40] to show
that even non-scale free distributions can generate scale-free
networks.

A. Applying Theorem 4.2

With F = Fλ, we have ξ�F = 0 and ξF = ∞. The
exponential distribution is rapidly varying since

1− Fλ(tx)

1− Fλ(t)
= e−λ(x−1)t, x, t > 0 (26)

and a strong zero-one law exists by Theorem 4.2. In fact, from
(18) and (24) the corresponding critical scaling can be taken
to be

θ�n = λF,n = λ−1 logn, n = 1, 2, . . . (27)

Thus, for any scaling θ : N0 → R+ satisfying θn ∼ cλ−1 logn
for some c > 0, we have limn→∞ P (n; θn) = 1 (resp.
limn→∞ P (n; θn) = 0) if 0 < c < 1 (resp. 1 < c).
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F (x) = 1 − e−x, x ≥ 0

Fig. 1. Exponential distribution (25) with λ = 1.

B. Sharper results for the exponential distribution

Results sharper than Theorem 4.2 are available when the
fitness variables follow the exponential distribution (25). To
state such results, write any scaling θ : N0 → R+ in the form

θn = λ−1 (γn + logn)
+
, n = 1, 2, . . . (28)

for some sequence γ : N0 → R – There is no loss of generality
in doing so. Here and elsewhere we use the notation x+ =
max(0, x) for any scalar x in R.

Theorem 5.1: If the distribution function F : R → [0, 1] is
the exponential distribution (25) with parameter λ > 0, then

lim
n→∞P

(
n;λ−1 (γn + logn)

+
)
= 1− e−e

−Γ

(29)

with sequence γ : N0 → R satisfying

lim
n→∞ γn = Γ (30)

for some Γ in R.
Theorem 5.1, whose proof is given in Section VII-E, is

in the spirit of the celebrated double-exponential result for
graph connectivity in Erdős-Rényi graphs [6, Thm. 7.3, p.
164], [13, Thm. 3.10, p. 42]. If in (28) we take γn ≡ Γ for
all n = 1, 2, . . ., then (29) becomes

lim
n→∞P

(
n;λ−1 (Γ + logn)

+
)
= 1− e−e

−Γ

. (31)

This result can readily yield estimates on the transition width
of the phase transition implied by the strong zero-one law;
details concerning this estimate are available in [29], [30].

The strong zero-one law of Theorem 4.2 is confirmed
through the simulation results displayed in Figure 1 when
λ = 1 so that the critical scaling (27) is now θ�n = logn for
each n = 1, 2, . . .. Here, and in the other simulation results
displayed later in the paper, we estimate P (n; cθ�n) with c > 0
by the empirical probability that the random threshold graph is
connected under the scaling n → cθ�n; this quantity is obtained
by averaging over 5000 independent realizations. In Figure 1
these values are indicated by means of marks (Exp.), while
the lines give the graphs of the mappings c → 1− e−n

−(c−1)
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for the various values of n (Thm). These curves are identified
through the following heuristic argument: For each c > 0,
select the sequence γ : N0 → R appearing in (29) so that

γn + log n = c logn, n = 1, 2, . . .

or equivalently, γn = (c− 1) logn. Blind substitution into the
sharper result (29) suggests the approximation

P (n; c logn) � 1− e−e
−(c−1) log n

= 1− e−n
−(c−1)

for sufficiently large n as we formally equate (c−1) log n with
its unbounded limit Γ = ±∞. Yet, in spite of this sleight of
hand, the displays show this approximation to be remarkably
accurate, expressing the sharp transition alluded to earlier.

C. On degrees

Turning to properties of degree distributions in random
threshold graphs, we follow the developments of [19] where
additional details can be found. Thus, fix n = 2, 3, . . . and
θ > 0. For each k = 1, 2, . . . , n, the degree of node k in
T(n; θ) is the rv Dn,k(θ) given by

Dn,k(θ) :=

n∑
�=1, � �=k

1 [ξk + ξ� > θ] . (32)

Under the enforced assumptions on the rvs ξ1, . . . , ξn, the rv
Dn,k(θ) is a Binomial rv Bin(n − 1; 1 − F (θ − ξk)) condi-
tionally on ξk. The rvs Dn,1(θ), . . . , Dn,n(θ) are obviously
equidistributed.

Next, pick t > 0. An easy conditioning argument leads to

E

[
e−tDn,k(θ)

]

= e−λθe−(n−1)t

+

∫ θ

0

(
1− e−λ(θ−x)(1 − e−t)

)n−1
λe−λxdx

after some uninteresting calculations. With the critical scaling
θ� : N0 → R+ given here by (27), we find

E

[
e−tDn,1(θ

�
n)
]

=
e−(n−1)t

n
+

∫ θ�
n

0

(
1− 1

n
(1− e−t)eλx

)n−1
λe−λxdx

for each n = 2, 3, . . .. Letting n go to infinity yields

lim
n→∞E

[
e−tDn,1(θ

�
n)
]
=

∫ ∞
0

e−(1−e
−t)eλx

λe−λxdx

by the Bounded Convergence Theorem since

lim
n→∞

(
1− 1

n
(1− e−t)eλx

)n−1
= e−(1−e

−t)eλx

, x ≥ 0.

Consequently, Dn,1(θ
�
n) =⇒n D where D is a conditionally

Poisson rv. It was shown by Fujihara et al. [19, Example 1,
p. 366] that

P [D = d] ∼ d−2 (as d → ∞) (33)

Under this critical scaling (27), we also have

lim
n→∞P (n; θ�n) = lim

n→∞P
(
n;λ−1 logn

)
= 1− e−1

upon using (31) with Γ = 0. Thus, the (essentially unique)
scaling which ensures a power-law degree distribution will
not result in graph connectivity in the a.a.s sense.

VI. APPLYING EXTREME VALUE THEORY

In Section IV we provided a complete characterization for
(15) in terms of the underlying weight distribution F . Charac-
terizing the convergence (16) is more involved, and requires
delving more deeply into Extreme Value Theory: Recall that
the rv ξ, or equivalently, its probability distribution function
F , is said to belong to the maximum domain of attraction of
a probability distribution function K : R → [0, 1] if there
exist sequences of norming constants {an, n = 1, 2, . . .} and
{bn, n = 1, 2, . . .} with an > 0 for all n = 1, 2, . . . such that

a−1n (Mn − bn) =⇒n K. (34)

Such a distribution K is called a max-stable distribution, and
the collection of all distributions F : R → [0, 1] such that (34)
holds constitutes the maximum domain of attraction of K ,
denoted MDA(K). According to the Fisher-Tippett Theorem
[16, Thm. 3.2.3, p. 121], [22, Thm. 3, p. 431], there are only
three max-stable distributions, namely the Fréchet, Weibull
and Gumbel distributions (which are introduced next).

At this point we recall that a mapping L : R+ → R+ is
slowly varying (at infinity) if

lim
t→∞

L(tx)

L(t)
= 1, x > 0.

A. In the domain of attraction of the Fréchet distribution

With α > 0, the Fréchet distribution is the probability
distribution function Φα : R → [0, 1] given by

Φα(x) =

⎧⎨
⎩

0 if x ≤ 0

e−x
−α

if x > 0.

(35)

Key to the discussion is the following characterization of
MDA(Φα) [16, Thm. 3.3.7, p. 131] [38, Prop. 1.11, p. 54]
(adapted to distributions with support on R+):

Theorem 6.1: The distribution function F : R → [0, 1] with
support contained in R+ belongs to the maximum domain of
attraction of Φα with some α > 0 if and only if

1− F (x) = x−αL0(x), x > 0 (36)

for some slowly varying functionL0 : R+ → R+. The norming
constants in (34) can be taken as

an = λF,n and bn = 0, n = 1, 2, . . . (37)

Distributions with support contained in R+ which belong
to MDA(Φα) include the Pareto and other power-law distri-
butions [16, p. 133]. From (36) it follows that ξF = ∞. The
norming constants {an, n = 1, 2, . . .} determined by (37) can
also be expressed in the form

an = λF,n = n
1
αL1(n), n = 1, 2, . . . (38)

for some other slowly varying function L1 : R+ → R+; see
[38, Prop. 0.8 (v), p. 23] for details.

Corollary 6.2: Assume that the distribution function F :
R → [0, 1] belongs to MDA(Φα) with some α > 0. Under
Assumptions A, graph connectivity obeys only a weak zero-
one law (13) with critical scaling θ� : N0 → (0,∞) given by
(24).
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Proof. When F is a member of MDA(Φα), Theorem 6.1
yields (16) for any scaling θ� : N0 → (0,∞) asymptotically
equivalent to λF : N0 → R+. The limiting rv R being
distributed according to a Fréchet distribution, we obviously
have P [R = 0] = 0, and the desired conclusion is now a
simple consequence of Theorem 3.2.

From these arguments it is plain that any distribution in the
maximum domain of attraction of a Fréchet distribution cannot
be rapidly varying. The power law distributions discussed next
illustrate both this point and Corollary 6.2: For some ν > 0
and a > 0, the rv ξ is said to be distributed according to
a power law distribution with parameters (a, ν), written ξ ∼
Pa,ν , if

P [ξ ≤ x] = Pa,ν(x) = 1−
(

a

a+ x

)ν

, x ≥ 0. (39)

Here, ξF = ∞ and ξ�F = 0. Note that Pa,ν is not rapidly
varying since

lim
t→∞

1− Pa,ν(tx)

1− Pa,ν(t)
= lim

t→∞

(
a+ t

a+ tx

)ν

= x−ν , x > 0.

We also check that

λF,n = a
(
n

1
ν − 1

)
, n = 1, 2, . . .

so that θ�n ∼ λF,n ∼ an
1
ν . Direct calculations show that

Mn

an
1
ν

=⇒n R

where R is distributed according to the Fréchet distribution
Φν given at (35). The corresponding weak zero-one law is
illustrated in Figure 2 for the choice of parameters a = 1 and
ν = 2, with critical scaling θ�n =

√
n for all n = 1, 2, . . ..

The weak nature of the zero-one law (13) is evident from the
figure since P (n; c θ�n) = 1 only for 0 < c < 0.3, becoming
close to zero only after c > 8 – Contrast this with the strong
zero-one laws observed in Figure 1 and Figure 3.

B. In the domain of attraction of the Weibull distribution

With α > 0, the Weibull distribution is the probability
distribution function Ψα : R → [0, 1] given by

Ψα(x) =

⎧⎨
⎩

e−|x|
α

if x ≤ 0

1 if x > 0.
(40)

Of particular interest is the following characterization of
MDA(Ψα) [16, Thm. 3.3.12, p. 135] (adapted to distributions
with support on R+):

Theorem 6.3: The distribution function F : R → [0, 1] with
support contained in R+ belongs to the maximum domain of
attraction of Ψα for some α > 0 if and only if 0 < ξF < ∞
and

1− F (ξF − x−1) = x−αL0(x), x > ξ−1F (41)

for some slowly varying function L0 : R → R+. The norming
constants in (34) can always be taken as

an = ξF − λF,n and bn = ξF , n = 1, 2, . . . (42)
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Fig. 2. Power-law distribution (39) with a = 1 and ν = 2.

Distributions with support contained in R+ which belong
to MDA(Ψα) satisfy 0 < ξF < ∞, and include the uniform
distribution on (0, 1), Beta distributions and distributions with
power law behavior at a finite right endpoint [16, p. 137]. The
theory in the form developed here does not apply to this class
of probability distributions. Indeed, Theorems 3.1 and 3.2 both
rely on (14) when taking advantage of the representation result
of Lemma 7.1. However, the arguments can be modified to
cover both the case ξF < ∞ under Assumptions A, and
probability distributions with support outside R+; details are
available in [30].

C. In the domain of attraction of the Gumbel distribution

The Gumbel distribution is the probability distribution func-
tion Λ : R → [0, 1] given by

Λ(x) = e−e
−x

, x ∈ R. (43)

Characterizing MDA(Λ) is more involved; see Theorem 2.5.1
in [23, p. 87] as well as the discussion in [38, Section 1.1].
However, the norming constants in (34) can be taken to be

an = φ(bn) and bn = λF,n, n = 1, 2, . . . (44)

with the auxiliary function φ : [0, ξF ) → R given by

φ(x) =

∫ ξF
x (1− F (t)) dt

1− F (x)
, 0 ≤ x < ξF . (45)

Distributions in MDA(Λ) with support contained in R+

include the exponential, Weibull and log-normal distributions
[16, p. 139]. If the distribution F : R → [0, 1] with support
contained in R+ belongs to MDA(Λ), then both 0 < ξF < ∞
and ξF = ∞ can occur. In either case, moments of all orders
are finite, i.e., E [Xr] < ∞ for all r ≥ 1 [16, Cor. 3.3.32, p.
148] [38, Ex. 1.1.1, p. 52], and the auxiliary function (45) is
indeed well defined.

Corollary 6.4: Assume that the distribution function F :
R → [0, 1] with support contained in R+ belongs to MDA(Λ)
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with ξF = ∞. Under Assumptions A, graph connectivity obeys
a strong zero-one law (12) with critical scaling θ� : N0 →
(0,∞) given by (24).

Proof. Again, ξF = ∞ implies limn→∞ λF,n = ∞, hence
limn→∞ bn = ∞. Gnedenko [22, Lemma 5, p. 445] has shown
that the norming constants {an, n = 1, 2, . . .} and {bn, n =
1, 2, . . .} at (34) with a Gumbel limit necessarily satisfy

lim
n→∞

an
bn

= 0.

Using this fact we get Mn

bn

P→ n 1, and distributions in
MDA(Λ) are necessarily of rapid variation. The conclusion
now follows by appealing to Theorem 4.2.

We close by showing how the theory developed thus far
applies to Weibull distributions: For some λ > 0 and β >
0, the rv ξ is said to be distributed according to a Weibull
distribution with parameters (λ, β), written ξ ∼ Fλ,β , if2

P [ξ ≤ x] = Fλ,β(x) = 1− e−λx
β

, x ≥ 0. (46)

The case β = 1 corresponds to the exponential distribution.
Again we have ξ�F = 0 and ξF = ∞. It is well known that Fλ,β

is in MDA(Λ). A direct argument (based on the appropriate
version of (26)) shows that Fλ,β is of rapid variation. By virtue
of either Theorem 4.2 or Corollary 6.4, strong critical scalings
exist and they are of the form

θ�n = λF,n =
(
λ−1 logn

) 1
β , n = 1, 2, . . .

Therefore, for any scaling θ : N0 → R+ such that
θn ∼ c

(
λ−1 logn

)1/β
for some c > 0, we have

limn→∞ P (n; θn) = 1 (resp. limn→∞ P (n; θn) = 0) if
0 < c < 1 (resp. 1 < c). The corresponding zero-one
law is illustrated in Figure 3 for a Weibull distribution with
parameters λ = 1 and β = 2, and critical scaling θ�n =

√
logn

for all n = 1, 2, . . ..

VII. PROOFS

A. Representing the probability of graph connectivity

The scaling laws for graph connectivity in random threshold
graphs all flow from the following observation.

Lemma 7.1: Under Assumptions A on the probability distri-
bution function F , we have

P (n; θ) = P [M�
n +Mn > θ] ,

θ > 0,
n = 2, 3, . . .

(47)

Proof. Fix θ > 0 and n = 2, 3, . . .. Recall that for distinct
i, j = 1, . . . , n, the nodes i and j are adjacent in the random
threshold graph T(n; θ) if and only if ξi + ξj > θ.

Let ξn,1, . . . , ξn,n denote the values of ξ1, . . . , ξn arranged
in increasing order, i.e., ξn,1 ≤ ξn,2 ≤ . . . ≤ ξn,n−1 ≤ ξn,n,

2The distributions given by (40) and (46), are both called Weibull distribu-
tions in the literature – After all, although they have non-intersecting supports,
they both display the same exponential decay. This accepted terminology,
while perhaps unfortunate, should not cause any confusion in this paper.
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Fig. 3. Weibull distribution (46) with λ = 1 and β = 2.

so that ξn,1 = M�
n and ξn,n = Mn. The rvs ξn,1, . . . , ξn,n are

the so-called order statistics associated with the rvs ξ1, . . . , ξn.
If ξn,1+ ξn,n > θ, then for each j = 1, . . . , n− 1, we must

necessarily have θ < ξn,j + ξn,n, and any node whose weight
coincides with ξn,n is indeed connected to each of the other
n − 1 nodes. In other words, the graph T(n; θ) is connected
if ξn,1 + ξn,n > θ, whence

P (n; θ) ≥ P [ξn,1 + ξn,n > θ] = P [M�
n +Mn > θ] . (48)

Assume now that the random threshold graph T(n; θ) is
connected. We claim that the inequality ξn,1 + ξn,n ≥ θ nec-
essarily holds. We proceed by contradiction: Assume instead
that ξn,1 + ξn,n < θ, so that ξn,1+ ξn,k < θ for k = 2, . . . , n.
Then, any node whose weight coincides with ξn,1 will not
be adjacent to each of the other n − 1 nodes – This node
is therefore isolated and the random threshold graph T(n; θ)
cannot be connected, contrary to assumption! These arguments
show that

P (n; θ) ≤ P [ξn,1 + ξn,n ≥ θ] = P [M�
n +Mn > θ] (49)

since P [ξn,1 + ξn,n = θ] = 0 under the foregoing
Assumptions A-(ii) that the weight distribution F has
no atom. We get (47) by combining (48) and (49).

B. Exploiting Lemma 7.1

Lemma 7.1 highlights the role to be played by the running
minima (7) and maxima (8), and their limiting theory. Indeed,
let θ� : N0 → (0,∞) be a scaling under consideration as a
possible critical scaling for graph connectivity, and write

R�
n =

Mn

θ�n
+

M�
n

θ�n
, n = 1, 2, . . . (50)

For any scaling θ : N0 → R+, the expression (47) becomes

P (n; θn) = P [R�
n > rn] , n = 1, 2, . . . (51)
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with
rn =

θn
θ�n

. (52)

Now, let n go to infinity under the following assumptions:
Suppose there exists some R+-valued rv R� such that

R�
n =⇒n R� (53)

and assume that
lim
n→∞ rn = r (54)

for some scalar r in R. Then, standard facts concerning
distributional convergence [4] readily yield

lim
n→∞P [R�

n > rn] = P [R� > r] (55)

whenever the limit r is a point of continuity for R�, i.e.,
P [R� = r] = 0.

If the scaling θ� : N0 → (0,∞) satisfies (14), then (9)
yields

lim
n→∞

M�
n

θ�n
= 0 a.s. (56)

since here we have 0 ≤ ξ�F < ∞ under Assumptions A. As a
result,

lim
n→∞

(
R�

n − Mn

θ�n

)
= 0 a.s., (57)

and the sequence {R�
n, n = 2, 3, . . .} converges in probability

(resp. in distribution) if and only if the sequence {Mn

θ�
n
, n =

2, 3, . . .} converges in probability (resp. in distribution), in
which case their limits coincide. These observations pave the
way to proving Theorem 3.1 and Theorem 3.2.

C. A proof of Theorem 3.1

In view of (14), (56) and (57) we note that (15) reduces
to R�

n =⇒n R� with R� = 1 a.s. Thus, pick any scaling
θ : N0 → R+ which satisfies (11) for some c �= 1 in (0,∞).
Since c �= 1 is a point of continuity for the degenerate rv
R = 1, we conclude from (55) (with the notation (52)) that

lim
n→∞P [R�

n > rn] = P [R� > c] =

⎧⎨
⎩

1 if 0 < c < 1

0 if 1 < c.

Letting n going to infinity in (51) yields the strong zero-one
law (12).

Conversely, assume that the strong zero-one law (12) holds
with critical scaling θ� : N0 → (0,∞) satisfying (14). For any
c �= 1 in (0,∞), consider the scaling θc : N0 → R+ : n →
cθ�n. Using (50), (51) and (52), we find

P (n; cθ�n) = P [R�
n > c] , n = 2, 3, . . .

and the zero-one law (12) for θc can now be rewritten as

lim
n→∞P [R�

n > c] =

⎧⎨
⎩

1 if 0 < c < 1

0 if 1 < c.

This amounts to R�
n =⇒n 1, or equivalently, R�

n
P→ n 1,

whence Mn

θ�
n

P→ n 1 by virtue of (14), (56) and (57) as noted
earlier.

D. A proof of Theorem 3.2

Under (14) we conclude from (16), (56) and (57) that
R�

n =⇒n R. To establish (13), consider scalings θ : N0 → R+

which satisfy (11), this time with either c = 0 or c = ∞ –
The notation (50)-(52) is in use in what follows.

Assume first that c = 0 so that limn→∞ rn = 0. The
condition P [R = 0] = 0 amounts to the origin r = 0 being
a point of continuity of the non-negative rv R. Hence, the
convergence R�

n =⇒n R implies limn→∞ P [R�
n > rn] =

P [R > 0] = 1, and upon letting n go to infinity in (51), we
get limn→∞ P (n; θn) = 1 when c = 0 as desired.

Next, take c = ∞ in (11): For every M > 0, there exists a
finite integer n�(M) such that rn > M whenever n ≥ n�(M),
and P [R�

n > rn] ≤ P [R�
n > M ] on that range. Letting n go

to infinity we conclude

lim sup
n→∞

P [R�
n > rn] ≤ lim sup

n→∞
P [R�

n > M ] . (58)

In particular, if M is a point of continuity for R, then the
convergence R�

n =⇒n R implies limn→∞ P [R�
n > M ] =

P [R > M ], and the inequality (58) becomes

lim sup
n→∞

P [R�
n > rn] ≤ P [R > M ] (59)

with the left handside being independent of M .
In order to conclude, write (59) for a sequence {Mj, j =

1, 2, . . .} of points of continuity for R such limj→∞Mj = ∞
– It is always possible to find such a sequence. The rv
R being honest, we get limj→∞ P [R > Mj] = 0 and the
conclusion lim supn→∞ P [R�

n > rn] = 0 follows, whence
limn→∞ P [R�

n > rn] = 0. Making use of (51) again we
conclude that limn→∞ P (n; θn) = 0 when c = ∞. This
completes the proof of (13).

Finally, Theorem 3.1 readily implies that only the weak
zero-one law (13) can hold under the assumption (16) for
some non-degenerate R+-valued rv R.

E. A Proof of Theorem 5.1

The rvs ξ1, . . . , ξn are exponentially distributed with pa-
rameter λ > 0; see (25). With the help of (44)-(45) the
convergence (34) becomes

λMn − logn =⇒n Λ (60)

as we note that

an = λ−1 and bn = λF,n = λ−1 logn, n = 1, 2, . . .

Since limn→∞M�
n = 0 a.s., we have λM�

n
P→ n 0, and

(60) implies

(λMn − logn) + λM�
n =⇒n Λ. (61)

Now, consider a scaling θ : N0 → R+ written in the form
(28) for some sequence γ : N0 → R. With this representation,
for n sufficiently large, we get from (47) that

P (n; θn) = P [M�
n +Mn > θn]

= P [(λMn − logn) + λM�
n > λθn − logn]

= P [(λMn − logn) + λM�
n > γn]

= P [(λMn − logn) + λM�
n − γn > 0] .
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Let n go to infinity: The convergence (61) together with
(30) yields (λMn − log n) + λM�

n − γn =⇒n Λ − Γ,
whence limn→∞ P (n; θn) = P [Λ− Γ > 0] since the Gumbel
distribution has only points of continuity. The desired result
(29) follows from (43).
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[8] M. Bradonjić, A. Hagberg and A.G. Percus, “Giant component and
connectivity in geographical threshold graphs,” in Proceedings of WAW
2007, San Diego (CA), December 2007. Lecture Notes in Computer
Science LCNS 4863. Edited by A. Bonato and F.R.K Chung, pp. 209-
216, New York Springer 2007.
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[18] A. Faragó, “Asymptotically optimal trade-off between local and global
connectivity in wireless networks,” Performance Evaluation 68 (2011),
pp. 142-156.

[19] A. Fujihara, Y. Ide, N. Konno, N. Masuda, H. Miwa and M. Uchida,
“Limit theorems for the average distance and the degree distribution of
the threshold network model,” Interdisciplinary Information Sciences 15
(2009), pp. 361-366.

[20] A. Fujihara, M. Uchida and H. Miwa, “Universal power laws in
threshold network model: Theoretical analysis based on Extreme Value
Theory,” Physica A 389 (2010), pp. 1124-1130.

[21] J. Gao, S. V. Buldyrev, H. E. Stanley and S. Havlin, “Networks formed
from interdependent networks,” Nature Physics 8 (2012), pp. 40–48.

[22] B. Gnedenko, “Sur la distribution limite du terme maximum d’une série
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